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Electromagnetic cascades: an alternative solution* 
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AbstmcL 
cascade shaver in a spinorial representation. 

We solve lhe one-dimensional diffusion equations for the electromagnetic 

1. Introduction 

The electromagnetic cascade shower is a multiplicative process involving the interac- 
tions of electrons and photons when passing through matter. The description of the 
electromagnetic cascade can be formulated mathematically as a system of simultane- 
ous differential equations for the number of electrons and photons at a certain depth 
of matter t ,  with energies between E and E + d E .  A well-known solution for these 
differential equations was obtained by Rossi and Greisen [l], based on functional 
transforms. 

In this paper we present an alternative way to obtain the solution for these. differ- 
ential equations based on a spinorial representation, using a Feynman-like procedure 
of ordered exponential operators [2, 31 to take into account the multiple interac- 
tions with matter. We solve the one-dimensional differential equations under two 
approximations, traditionally named A and B. ‘Approximation P: stands for electrons 
and photons with large energies compared with the critical energy of the traversed 
material, so that the ionization loss of electrons and the effect of Compton scattering 
can be neglected. This situation is treated in section 2. If the effect of ionization 
loss is included, but the Compton scattering is still neglected, the treatment is called 
‘approximation B ,  as considered in section 3. In both cases the solution is obtained 
using complete-screening cross sections for radiation and pair creation processes [4]. 

2. Solution in ‘approximation A’ 

Let n ( E ,  t ) d E  and y ( E , l ) d E  be the average number of electrons and photons 
with energies between E and E + d E  in a shower at depth t (in radiation lengths). 
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In approximation A, the diffusion equations are 

a 
Z n ( E , t )  = - A n ( E , t )  + B y ( E . 1 )  

where A,  E ,  C and fi are operators defined by 

and po(v)dv = po(E, E ' ) d E ' / E  ir the probability, per radiation length, of the 
emission of a photon in the e n e r a  interval (E', E' + dE ' )  by an electron of energy 
E, and T , ~ ~ ( U ) ~ T L  = dj0( E ,  E')d E ' / E  is the probability, per radiation length, of 
pair creation by a photon with energy E, giving rise to an electron in the interval 
(E ' ,  E' + d E')  [l, 41. 

In order to solve (1) we define a two-component spinor 

and a 2 x 2 operator matrix 

Equations (1) can be transformed in a spinor differential equation 

When the electromagnetic cascade shower is initiated at depth t = 0 by a particle 
~ h h  dpfined energy E,j the hni~nday  condition of (5) an be written as 

d ( E , o )  = & ( E -  E,)QJ,, (6) 

where the two-component spinor & depends on the particular considered cascade. 
If the cascade is initiated by an electron, then dj0 = (i), otherwise &o = ( y ) ,  when it 
ir, initiated by a photon. 
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Using the Mellin integral representation for 6( E - Eo) ,  we have as a boundary 
condition 

The formal solution of (5)  is given by 

9 ( E , E o , t )  = EXp eat' @(E ,O)  [I' 1 
where !2xp[$k dt'] is an expansional, defined by a sum of multiple depth ordered 
integrals [2, 31, so that 

Once the h a t r i x  acts only on the energy dependence of (I)(E,O), which is 
manifestly &independent, it is straighfonuard to rewrite (9) as 

I 1 3 . .  . 
3! 

+ - cc XU)( E ,  0 )  + . . , 

which can be expressed simply by 

Q ) ( E , E o , t )  = e x p [ t 2 ] 0 ( E , O ) .  ('1) 

The 2 x 2 matrix ti: can he written in terms of the Pauli matrices 

tc = ?oI  + I. U (12) 

where 

Since A ,  E, and D are commutative operators, then (I ' U ) '  = I. z and we 
can introduce the  following operator 

7 i r  E (I f I ) 1 / 2  = ( t / 2 ) \ / ( A  - D)'+ 4BC. ('4) 

Hence, with the previous notation, the exponential operator exp[Lk] in (11) can 
be rewritten as 
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We note that by expanding the right-hand side of (15) we get only even powers 

Applying (15) to the boundaly condition, (7), we obtain the solution of (5) 
of 61. This justifies the use of the notation used in (14). 

where M , ( s , t )  is a 2 x 2 matrix defined by 

Here, z,(s),z(s) and m(s)  are, respectively, the eigenvalues of the operators i , ,z  
and 6, in this energy basis. Formally, this means replacing the operators A ,  E, C 
and D in (13) and (14) by their eigenvalues [l, 41 

In a more concise way, (17) can he written as 

M , ( s , t )  =f?*). 

For a given choice of the two-component spinor &,, which defines the primaly 
particle initiating the cascade shower, approximate methods must be applied to the 
integral in equation(l6). in order to evaluate the solution & ( E ,  E,,t). 

In order to see that (16) and (17) are exactly the solutions by Rossi and Greisen 
[l] we express M , ( s , t )  in the following way 

so that the first,column of the matrix corresponds to the cascade initiated by an 
electron and the second column to one initiated by a photon. 

Rewriting also (17) in the 2 x 2 matrix form and identifying it with (20). term by 
term, we obtain: 
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Following the notation of Nishimura [4], and using the eigenvalues corresponding 
to (13) and (14), we define 

and 

(23) 
ZQ(S) f W ( S )  0 0  + X1,2is) = *  

2 W ( S )  A , ( & )  - 
H1,2(S) 

where the subscript l(2) in X and H corresponds to the upper (lower) signs. We 
note also that X,(s) - X,(s) = Zw(s)/ t ,  so that (21) becomes 

n,(s,t) = H,(s )e"( ' )*+ H 2 '  (5)eA2(*jL 

- L ( S >  t )  = C ( S )  { e h d r ) f  - e A 1 ( " l )  

Xi(.$) - X?(.S) 

} { e A l 1 8 ) l  - e A d s l ~  
X,(s) - X?(.S) 

n,(s,t) = 

-/ ,(s,t)  = H 2 ( S ) & ( $ ) I  + N,( s )eA2(+  

which reproduces the solutions obtained by Rossi and Greisen [l] in Nishimura's 
notation. 

3. Solution in 'approximation IS' 

The diffusion equations are now given by 

a i) 
,n(E,t) = - A n ( E , t ) +  b y ( E , / ) + e - I I ( E , f )  i)E 

(25) 

where E is the critical energy for the effect of ionization loss by electrons. In the 
spinorial form these equations can be wit ten in the following way: 

a 
- 4 ( E , t ) =  at e d , ( E , t ) + t l d , ( E , t )  (26) 

where 9 is given by (4), 9, is the 2 x 2 operator matrix 

and the boundaiy condition is expressed by (7). 

given in terms of expansionals by 
f:"̂  ̂6 ""A 6 n-_ "-" " _--.. +"*:.,- ,.""*-tArr .La c ,...... a, o..,...:-" ^C ,1L\ :" 
.7,,,l,c L. (I,," ** ' l , G  , I"II-cuII, I I I"LoLI"~ U, 'C1OLU1J,  L I I b  L U I I I J ' I ,  .Xl ,YL,U,,  "L (L", D 

(28) 
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According to the Feynman-like formalism of ordered exponential operators, the 
expansional in (28) can he decomposed as follows [2, 31: 

(29) 1 Exp [L ( 2 + 4  =Exp [ L 1 0 ( t , r ) 2 1 0 - l ( t , z ) d z  6 ( t ,O)  
I 

with 

b ( t , r ) = ~ x p  [ l ' i : d r r ]  = e x p [ ( t - z ) i : l .  (30) 

The expansional in (30) reduces itself to an ordinaly exponential, as shown in 
approximation A. 

From now on, our procedure will he to calculate the leading terms of the expan- 
sional (29) first, and then, from these terms, find a generalization to the complete 
solution (28): 

[l + ~ ' B ( t , z ) ~ l O - l ( t , ~ ) d r  6 ( t , O )  = 6( t ,O)+  6(t,z)k10(z,0)dz. 

(3') 
1 l 

The first term on the right-hand side of (31) is the zeroth order of (29) and leads 
to the solution already obtained under 'approximation A. The contribution of the 
second term, when applied to (28), gives 

L' d z e ( t - z ) x ( a + l ) i  *(I + os )e~~(J )q$n .  (32) 

Using the notation of (19), we have 
e x p [ ( t - r ) C ( s + l ) ] = M n ( . s + l , t - z )  

and so the solution q$(E,E, , t ) ,  up to first order in ( E I E ) ,  is 

d r  M,(B + 1, t - r)$ I + On)M,( 8 ,  i n .  (33) x l  )Id, 
It is straightfonvard to calculate the contribution of the higher-order terms of the 

expansional, (29), and write the spinor solution as 

(34) 

(35) 

where the 2 x 2  matrix M,, (s ,  t )  is derived from the following recurrence relationship: 

M , ( s , t )  = (s + n )  MO(R+ n , t  - ; ) + ( I  + o:,)M,,-l(.s,z)dz. l 
It is easy to see that (34) and (35) reproduce the particular solutions obtained by 

Nishimura [4]. In his work, the behaviour of (34) is also discussed, giving the result 
that the series is uniformly convergent if 2 d / E  < 1 .  Anyway, in the high energy 
region the series is always uniformly convergent and the solution (34) with (35) can 
be approximated by (33). 
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4. Conclusion 

In conclusion, we have calculated the solutions of the one-dimensional diffusion equa- 
tions for the electromagnetic cascade showers in approximations A and B, within a 
spinorial formalism. We have shown that, using a Feynman-like formalism of ordered 
exponential operators, the solution in approximation B can easily be calculated, if we 
know the solution under approximation A. The great advantage of this method lies in 
its simpiicity. Aithough we have obtained the same results already obtained by Rossi 
and Greisen [l], and Nishimura [4], the method allows the results to be obtained 
in a straightfonvard way, without any previous supposition on the behaviour of the 
solutions. 

This procedure can also be applied to obtain the solutions in other approximations 
[4], particularly to analyse the solutions of the three-dimensional diffusion equations. 
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